
Predicting the Best Units within a Fleet: Prognostic Capabilities Enabled by Peer
Learning, Fuzzy Similarity, and Evolutionary Design Process

Piero P. Bonissone, Anil Varma

General Electric Global Research
One Research Circle, Niskayuna, NY 12309, USA

E-Mail: {bonissone,varma}@research.ge.com

Abstract. We analyze the task of selecting the most
reliable units within a fleet of vehicles and formulate it as a
prediction and classification problem. The prediction of each
unit’s remaining life is based on the identification of “peer”
units, i.e. vehicles with similar utilization and maintenance
records that are expected to behave similarly to the unit under
consideration. With these peers, we construct local predictive
models to estimate the unit’s remaining life. We use
evolutionary algorithms (EA’s) to develop the criteria for
defining peers and the relevance of each criterion in
evaluating similarity with the unit. Each individual in the
EA’s population fully characterizes an instance-based fuzzy
model that is used to predict the unit’s remaining life. The
precision of the selection of units with best-expected life
provides the fitness value. We analyzed the performance of
the evolutionary approach over two years of operation and
maintenance data for a fleet of 1100 locomotives. The results
illustrate the high accuracy and robustness of this approach.
In the conclusion, we highlight the implications of this
approach for supporting the lifecycle of the fuzzy models.

I. INTRODUCTION

The behavior of complex electromechanical assets, such as
locomotives, tanks, and aircrafts, varies considerably across different
phases of their lifecycle. Assets that are identical at the time of
manufacture will ‘evolve’ into somewhat individual systems with
unique characteristics based on their usage and maintenance history.
Utilizing these assets efficiently requires a) being able to create a
model characterizing their expected performance, and b) keeping
this model updated as the behavior of the underlying asset changes.
This paper outlines a fuzzy peer-based approach for performance
modeling combined with an evolutionary framework for model
maintenance. A series of experiments using data from locomotive
operations were conducted and the results from this initial validation
exercise are presented.

A. Problem Description

The focus of this series of experiments is mission
reliability. This can be broadly defined as – given a mission
of duration X days, what percentage of units assigned to that
mission are able to complete the mission without a critical
failure. The motivation for high mission reliability in both
commercial and DOD environments is two-fold. First, it
makes mission planning and execution more predictable and
effective. Second, it reduces the logistics footprint required to
support a certain level of readiness. In the military domain, it
may mean picking the best 5 vehicles to conduct a
reconnaissance mission in swampy terrain. In the commercial
sector, it may imply selecting the best 5 locomotives to
deliver time-critical shipments from coast to coast. This
problem is accentuated in the case of new mission types or
new equipment platforms when insufficient data exists on
how the equipment will behave in that environment.

B. Paper Structure

In section 2, we cite related work and define the focus of
our work: the use of evolutionary search for model generation
and maintenance. In section 3, we describe the data used to
evolve out models, and the baselines and metrics used to
evaluate our experiments. In section 4, we formalize our
proposed approach, the evolution of peer-based predictive
models. In the last two sections, we show the results of our
experiments, describe the promise of this methodology, and
discuss its possible future extensions.

II. RELATED WORK

A. Model Characterization

A model is characterized by its representation (structural
and parametric information) and its associated reasoning
mechanism, which is usually related to the representation.
The generation and updating of a model requires a search
method to define the model’s representation and resolve any
degree of freedom in designing its reasoning mechanism.
This definition applies across a broad class of models,
ranging from a common representation for physics-based
models (Linear Differential Equations), to widely popular
probabilistic models (Bayesian Belief Networks), to powerful
functional approximators (Neural and Fuzzy Systems) and to
non-graphical representation, such as instance-based models.
This is summarized in Table I and further described in [1].

TABLE I
REPRESENTATION (STRUCTURE AND PARAMETERS), REASONING

MECHANISMS, AND DESIGN SEARCH METHODS FOR MODELING TECHNIQUES

Modeling
Technique LDE BBN NN TSK Instance

-based
Model
Structure

Order
Topo-
logy

Topology
Rule
Set

Attribute
Space

Model
Parameters

Coeffi-
cients

Prior
Prob.

Condit.
Prob.

Biases
Weights

Term
Sets

Scaling
Factors
Coeffi-
cients

Attribute
Weights

&
Similarity
Parameter

Reasoning
Mechanism

Solve
Eqs.:

Closed
Form or
Approx

Node
evaluat.

&
Propa-
gation

Node
evaluation

&
Propa-
gation

Node
evaluat.

&
Propa-
gation

Local
Model

evaluation
& Output
Aggreg.

Design
Search
Method

First
Princip.
Energy-
based

Methods

Manual
EA
EM
…

Manual
EA

Backprop
Conjugate

Grad.

Manual
EA

Back-
prop
…

Manual
EA
…

B. Evolutionary Approach to Designing Models

The main contribution of our methodology is the use of
evolutionary search to generate instance-based predictive

models. In the past, EA’s have been extensively used to
evolve neural networks [2-3], Bayesian belief networks [4],
fuzzy systems [5], and case-based classifiers [6]. However, to
the best of our knowledge, they have never been used to
design instance-based predictors.

III. DATA COLLECTION AND EXPERIMENTS SET-UP

A. Data Sources
The data used to train our model and validate our

experiments were collected from four different sources, as
illustrated in Figure 1.

Data Categories:
- Configuration Information (Source: GE Rail)

- Maintenance & Repair Information
Fault Codes (Source: Locomotive’s EOA™)
Recommendations (Source: GE Rail)
Repairs (Source: GE Rail /Railroads)

- Utilization Information (Source: Railroads)

Data Links

GE Rail Locomotives Services,
Design & Engineering

Railroad Yards

Utilization Information
(1 download/~ 30 days)

Locomotives with EOA ™Service

Fault codes
(3 uploads/day)

Recommendations
(4-8 Rx/yr)

GE Rail /Railroads Repair Shops

Repair Execution
(4-8 Repairs/yr)

 Fig 1. Data sources and Data compilation
1) Locomotive Design & Engineering Data from GE Rail:

GE Rail manufactured the locomotives in this study. As the
OEM, GE Rail possessed engineering data on locomotive
models, configurations, date of manufacture, date of service,
the date EOA service was installed, upgrades and software
modifications (Figure 1 top-right corner).

2) Locomotive Recommendation Data from GE Rail
EOA remote monitoring and diagnostics service: For each
locomotive, there was a time-stamped record of when the
Expert on Alert (EOA) system detected abnormal patterns
in the fault data (Figure 1 top-left corner), leading to a
recommendation being issued by GE Rail Locomotive
Services (Figure 1 top-right corner). A red or yellow
recommendation indicated a problem that was serious and
required a fix in the next 7-10 days at most.

3) Locomotive Maintenance Data from Repair Shops:
Each red or yellow recommendation used in the experiments
was associated with maintenance feedback from railroads or
GE repair shops (Figure 1 bottom-right corner), which
indicated the exact repair action that successfully fix the
problem. This allowed us to screen the data and include only
maintenance intervals where a genuine problem existed on
the locomotive that was verified by the maintenance
personnel.

4) Locomotive Utilization data from a selected railroad:
Each locomotive maintains an on-board record of a

number of utilization-related parameters that are collected
when a locomotive reaches a railroad yard (Figure 1 bottom-
left corner). These parameters include odometer miles, total
megawatt-hours, hours spent motoring, hours spent in
dynamic braking, cumulative engine hours, cumulative

engine hours moving, percentage of time spent in each of the
eight notch settings (analogous to gear settings) and others.

B. Data Segmentation
We wanted to investigate how environmental, operational,

or maintenance changes could affect our experiments and
whether our learning techniques could adapt to such changes.
Furthermore, we needed to assess how the incremental
acquisition of data could improve the performance of our
learning techniques. To this end we decided to create three
data slices, on May 22, 2002, November 1, 2002, and May 1,
2003, respectively. The size of the fleet increased over time
(from 262 to 634 and 845 units, respectively), as new units
were placed in service and as we started collecting more
utilization and maintenance data from previous units. As a
result the number of the best 20% performers increased with
the size of the fleet to 52, 127, and 169 units, respectively.
This is shown at the bottom of Figure 2.

Slice 1
Slice 2

Slice 3

Repair

Recommendation

Time Slice 1:
22 May 2002

Time slice 2:
01 Nov 2002

Time Slice 3:
01 May 2003

262 units 634 units 845 units 965 units

20% Threshold
= 49 days

20% = 52 units

20% Threshold
= 52 days

20% = 127 units

20% Threshold
= 75 days

20%= 169 units

20% Threshold
= 71 days

01 Nov 2003

Full fleet

 Fig 2: Data Slices used in Experiments
These three data slices were used to determine the target

units for our selection. For each data slice we constructed
three sets of targets (i.e., ground truth for the experiments): 1)
the best 20 % past performers; 2) the best 52 past
performers; 3) the best 20% future performers. We identified
the first two target sets by sorting the units in decreasing
order using the median time-between-failure of past
operational durations, until we identified the best 20% or the
best 52 units. We identified the last target set by sorting the
units in decreasing order using the duration of the first period
of operation after the data slice.

C. Performance Metric
 The primary metric was the ability of a classifier to select

the best N units in any given slice (i.e., its precision). We
investigated two approaches to define the top ‘N’ units.

1) Fixed Percentage Approach: In the fixed percentage
approach, the task of the classifier was to pick the top 20% of
units. The actual number of units to be selected increased
with fleet size as we progressed from slice 1 to slice 3.

2) Fixed Number Approach: In the fixed number of units
approach, the actual number of units to be selected was kept
constant. In the experiments, the number used was 20% of the
first slice, i.e. 52 units. As the size of the fleet increased, the
selection task got harder as 52 units represented 12% and 6%
of the fleet size in slices 2 and 3 respectively.

D. Baselines
Two baselines were calculated to measure the increase in

capability provided by the collective mind algorithms.
1) Random: The first baseline measured the expected

performance if selection of the best N units were done
randomly. This obviously represented a worst-case scenario.

2) Heuristics: The second baseline was the best
performance achieved by single or multiple heuristics (based
on any of the measured or calculated parameters) which we
used to rank the fleet and pick the best N units.

IV. PROPOSED LEARNING METHODOLOGY

A. Peer-based Learning Methodology

In our experiments we wanted to explore peer-based
learning methodologies, since they provide a transparent,
adaptable model mechanism. We focused on the
representation and reasoning mechanisms of instance-based
reasoning. After developing several exploratory peer-based
models, using a manual process based on WEKA [7], we
decided to use a fuzzy instance-based classifier (FIBC)
designed by an evolutionary search (instead of a manual
process). In section IV B, we will describe the FIBC, while
its EA-based design will be detailed in section IV C.

B. Fuzzy Instance-Based Classifiers (FIBC)

Instance-based reasoning (IBR) relies on a collection of
previously experienced data that can be kept in their raw
representation. Unlike Case-based Reasoning (CBR), they do
not need to be refined, abstracted and organized as cases.
Like CBR, IBR is an analogical approach to reasoning, since
it relies upon finding previous instances of similar problems
and uses them to create an ensemble of local models. Hence
the definition of similarity plays a critical role in the
performance of IBR’s. Typically, similarity will be a dynamic
concept and will change over the use of the IBR. Therefore, it
is important to apply learning methodologies to define and
adapt it. Furthermore, the concept of similarity is not crisply
defined, creating the need to allow for some degree of
vagueness in its evaluation. We addressed this issue by
evolving the design of a similarity function in conjunction
with the design of the attribute space in which the similarity
was evaluated. Specifically we used the following four steps:

1) Retrieval of similar instances from the Data Base
2) Evaluation of similarity measure between the probe
and the retrieved instances
3) Creation of local models using the most similar
instances (weighted by their similarity measures)
4) Aggregation of outputs of local model to probe

1) Retrieval: The retrieval step consists in finding all DB
instances whose behavior is similar to the probe. These
instances are the probe’s potential peers and can be seen as
points in an n-dimensional feature space. For instance, let us
assume that a probe Q has an associated n-dimensional vector
of values for each potential attribute:

],...,,[,,2,1 QnQQ xxxQ = (1)

A similar n-dimensional vector characterizes each unit ui
in the fleet. Furthermore, each unit has an attached vector
O(ui)=[D1,i , D2,i , …, Dk(i),i] containing its historic operational
availability durations:

],...,,[)(;],...,,[),(,2,1,,2,1 iikiiiiniii DDDuOxxxu == (2)

For each dimension i, we define a Truncated Generalized
Bell Function, TGBFi(xi;ai,bi,ci), centered at the value of the
probe ci,, which represents the degree of similarity along that
dimension. Specifically:


















>











 −+










 −+=

−−

otherwise

a

cx
if

a

cx
cbaxTGBF

ii b

i

ii

b

i

ii

iiii

 0

1 1
),,;(

1212

ε (3)

where ε is the truncation parameter, e.g. ε =10-5

Since the parameters ci in each TGBFi are determined by
the values of the probe, each TGBFi has only two free
parameters, ai and bi, to control its spread and curvature. In a
coarse retrieval step, we extract an instance in the DB if all of
its features are within the support of the TGBF’s, using
standard SQL queries. Now we can formalize the retrieval
step. P(Q), the set of potential peers of Q to be retrieved, is
composed of all units within a range from the value of Q:

{ })(|,...,1,)(QNumjuQP jj ∈== and N(Q) - a neighborhood

of Q – is defined by the constraint
ijiQi Rxx <− ,,
 for all

potential attributes i for which their corresponding weight is
non-zero. Ri is half of the support of the TGBFi , centered on
the probe’s coordinate xi,Q.

2) Similarity Evaluation: Each TGBFi is a membership
function representing the degree of satisfaction of constraint
Ai(xi). Thus, TGBFi measures the closeness of an instance

around the probe value Qix , along the ith attribute. For a

potential peer Pj, we evaluate),, ;(,,, Qiiijiji xbaxTGBFS = ,

its similarity with the probe Q along each attribute i. The
values (ai, bi) are design choices initially chosen manually,
and later determined by the EA’s. Since we want the most
similar instances to be the closest to the probe along all n
attributes, we use a similarity measure defined as the
intersection (minimum) of the constraint-satisfaction values:

{ } { }),,;(,1,1 Qiiii
n
iji

n
ij xbaxTGBFMinSMinS == == (4)

Equation (4) implies that each attribute is equally
important in computing similarity. In our case, however, we
consider each criterion to have a different relevance in that
computation. Therefore, we attach a weight wi to each
attribute Ai and we extend the notion of similarity measure
between Pj and the probe Q using a weighted minimum
operator:

()[]{ }
()[]{ }),,;(,1

,1

,1

,1

Qiiiii
n
i

iji
n
ij

xbaxTGBFwMaxMin

SwMaxMinS

−=

−=

=

= (5)

where wi ∈ [0,1]. The set of values for the weights {wi} and of
the parameters {(ai, bi)} are critical design choices that
impact the proper selection of peers. In this section we
assume a manual setting of these values. In section IV C we
will explain their derivation using evolutionary search.

3) Creation of Local Models: The idea of avoiding pre-
constructed models and creating local model when needed can be
traced back to memory-based approaches [8] and lazy-learning [9-
10]. Within the scope of this paper, we will focus on the
creation of local predictive models used to forecast each
unit’s remaining life. First, we will use each local model to

generate an estimated value of the predicted variable. Then,
we will use an aggregation mechanism, based on the
similarities of the peers, to determine the final output.

For instance, let us assume that for a given probe Q we
have retrieved m peers, Pi(Q), i=1,…, m. Each peer Pi(Q) has
a similarity measure Si with the probe. Furthermore, each
peer Pi has a track record of operational availability between
failures O(Pi) = [D1,i , D2,i , …, Dk(i),i]. Note that each peer
Pi(Q) will have k(i) availability pulses in its track history. For
each peer Pi, the goal is to determine the duration of the next
availability duration Dk(i)+1,i. Then we want to combine the
prediction of all the peers {Dk(i)+1,i} (i=1,…, m) to estimate
the availability duration for the probe Q.

Since we did not have enough historical data to reliably
generate local regressions, we experimented with simpler
models, such as averages and medians. We found that the
most reliable way of generating the next availability duration
Dk(i)+1,i. from the operational availability vector O(Pi) = [D1,i
, D2,i , …, Dk(i),i] was to use an exponential average that gives
more relevance to the most recent information, namely:

ij

jikik

jiiikiik DDDD ik

,

)()(

2,1),(,1)()1()1(1)(××−+−==
−

=+ ∑− ααα (6)

Again, critical to the performance of this model is the choice
of the value of parameter α. Section IV C will illustrate how
to determine this value using evolutionary search.

4) Aggregation of Local Models’ Outputs: We need to
combine the individual predictions {Dk(i)+1,i} (i=1,…, m) of
the peers Pi(Q) to generate the prediction of the next
availability duration, DNext,Q for the probe Q. We define this
aggregation as the similarity weighted average, by computing
the weighted average of the peers’ individual predictions
using their normalized similarity to the probe as a weight:

∑

∑
=

= +×
= m

i i

m

i iiki

QNext
S

DS
D

1

1 ,1)(
,

 (7)

Given the critical role played by the weights {wi}, by the
search parameters {(ai, bi)} and by exponent α, it was
necessary to create a methodology that could generate the
best values according to our metrics (classification precision).

C. Evolution of Fuzzy Instance Based Classifiers (FIBC)

After testing several manually-design peer-based models,
we decided to use evolutionary search to develop and
maintain the fuzzy instance based classifier. Using the
wrapper methodology detailed in [6] we defined the use of
Evolutionary Algorithms (EA’s) to tune the parameters of a
classifier used to underwrite insurance applications. In this
application, we extend evolutionary search beyond
parametric tuning to include structural search, via attribute
selection and weighting [11].

1) EA Architecture: The EA’s are composed of a
population of individuals (“chromosomes”), each of which
contains a vector of elements that represent distinct tunable
parameters within the FIBC configuration. Examples of
tunable parameters include the range of each parameter used
to retrieve neighbor instances and the relative weights
associated with each parameter used for similarity
calculation. The EA’s used two types of mutation operators

(Gaussian and uniform), and no crossover. Its population
(with 100 individuals) was evolved over 200 generations.

2) Chromosome Representation: Each chromosome
specifies a vector of weights [w1, w2, … wD] and defines an
instance of the attribute space used by its associated
classifier. If }1,0{∈iw , we perform attribute selection, i.e.,

we select a crisp subset of the universe of potential attributes.
If []1,0∈iw we perform attribute weighting, i.e., we define a

fuzzy subset of the universe of potential attributes.
[] () () ()[] []α , ..., ,, ,, ... 221121 DDD bababawww (8)

[]
{ }

 AveragelExponentiafor Parameter

GBFfor Parameters)b,(a

features selected of ycardinalit (fuzzy) = d

D U, features of universe of yCardinalit = D

 attribute 1,0

or attribute 1,0 where

iii

=
=

=
∈
∈

∑

α

D

i i

i

i

w

U

selectionforw

weighingforw

In summary, the first part of the chromosome, containing
the weights vector [w1, w2, … wD,], defines the attribute space
(e.g. the FIBC structure) and the relevance of each attribute in
evaluating similarity. The second part of the chromosome,
containing the vector of pairs [(a1, b1), … (ai, bi), … (aD, bD)]
defines the parameter for the retrieval and similarity
evaluation. The last part of the chromosome, containing the
parameter α, defines the local model.

FIBC Model
(based on attribute subset)

Individual in EA population defines
attribute subset and attribute weights

FIBC Applied to all Instances
using leave-one-out approach

Fitness Function
based on Precision

Evolutionary Search

Complete Attribute Set

Fig 3. Fitness function using Wrapper Approach
2) Fitness Function: The fitness function is computed using
the wrapper approach [11] – see figure 3. For each
chromosome, represented by (8), we instantiate its
corresponding FIBC. Following a leave-one-out approach, we
use the FIBC to predict the expected life of the unit under
question – see (7) – following steps 1-4, as described in
section IV B. We repeat this process for all units in the fleet,
and we sort them in decreasing order, using their predicted
duration DNext, Q. Then we select the top 20%. The fitness
function of the chromosome is the precision of the
classification, TP/(TP+FP).

For each set of experiments, we used the three time slices
illustrated in Figure 2. Our goal was to test the adaptability of
the learning techniques to environmental, operational, or

maintenance changes. Furthermore, we wanted to determine
if their performance could improve over time, with
incremental data acquisition.

V. RESULTS

A. First Experiment Set: Top 20% Past Performers
For each time slice, we used EA’s to generate an

optimized weighted subset of attributes to define the peers of
each unit. We used the evolved peer approach to predict the
best 20% of the fleet, based on their past performance. In this
case a random selection would yield 20%.

Time slice 1 (fleet size = 262 units; top 20% = 52 units):
Evolved Peers outperformed both manually designed peers
and heuristics/fleet -based approach: 48% vs. 41% vs. 32%.

Time slice 2 (fleet size = 634 units; top 20% = 127 units):
Evolved Peers outperformed both manually designed peers
and heuristics/fleet -based approach: 56% vs. 55% vs. 46%.

Time slice 3 (fleet size = 845 units; top 20% = 169 units):
Evolved Peers outperformed both manually designed peers
and heuristics/fleet -based approach: 60% vs. 54% vs. 50%.

B. Second Experiment Set: Top 52 units Past Performers
Since the fleet size at each start-up time was different, we

repeated the same experiments keeping the number of units
constant (52 units) over the three start-up times, instead of
keeping a constant top 20%. Thus the random selection
baseline changed from [20%-20%-20%] to [20%-8%-6%],
i.e., 52/262=20%; 52/634=8%; 52/845 = 6%. Furthermore,
given the superior performance of the evolved peers over the
manually constructed peers, we decided to use the optimized
peer design instead of the manual one in all subsequent
experiments. The following results are shown in Figure 4.

Time slice 1 (fleet size = 262 units; top 52 units= 20%):
Evolved Peers outperformed heuristic/fleet -based approach:
48% vs. 32% (vs. 20% random selection).

Time slice 2 (fleet size = 634 units; top 52 units = 8%):
Evolved Peers outperformed heuristic/fleet -based approach:
56% vs. 37% (vs. 8% random selection).

Time slice 3 (fleet size = 845 units; top 52 units = 6%):
Evolved Peers outperformed heuristic/fleet -based approach:
63.5% vs. 37% (vs. 6% random selection).

C. Third Experiment Set: Top 20% Future Performers
In the previous two sets of experiments, the targets for

selection were the best-known units in the fleet based on their
past performance. After these experiments were completed in
April, we switched the target of the selection to the one with
the best next pulse duration. Once again, the same
methodology, based on evolved peers outperformed the rest –
see Fig 5. In this case a random selection would yield 20%.

Time slice 1 (fleet size = 262 units; top 20% = 52 units):
Evolved Peers outperformed both heuristic/fleet and unit’s
own history-based approach: 43% vs. 32% vs. 26.5%.

Time slice 2 (fleet size = 634 units; top 20% = 127 units):
Evolved Peers outperformed both heuristic/fleet and unit’s
own history-based approach: 42.2% vs. 42% vs. 33.6%.

Time slice 3 (fleet size = 845 units; top 20% = 169 units):
Evolved Peers outperformed both heuristic/fleet and unit’s
own history-based approach: 54% vs. 36% vs. 33.8%.

48.1%

55.8%

63.5%

32%
37% 37%

20%

8% 6%5.0%

15.0%

25.0%

35.0%

45.0%

55.0%

65.0%

75.0%

1 2 3

Time Slices

S
el

ec
ti

on
 P

er
fo

rm
an

ce

Evolved Peers

Non Peer-Heuristics
Random

10 x better
than random
1.7 x better

than
heuristics

(52 out of 262 units) (52 out of 634 units) (52 out of 845 units)

Fig. 4. 2nd Set of Experiments (52 Units; Past Performers)

43% 42%

55%

32%

42%

36%

20% 20% 20%

27%

34% 34%

22%
19% 20%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%

45.0%

50.0%

55.0%

60.0%

1 2 3

Time Slices

S
el

ec
tio

n
P

er
fo

rm
an

ce

Evolved Peers
Non Peer - Heuristics
Random
Own (Time Series)
Own (Median)

2.5 x better
than random
1.5 x better

than heuristics

Fig. 5. 3rd Set of Experiments (20% - Future Performers)

VI. CONCLUSIONS

A. Manually Designed versus Evolved Peer-based Models
The static (manually designed) peers outperformed both

single and multiple heuristics based on fleet-wide data. They
exhibited a graceful degradation when critical information
was not provided (robustness to information loss). We
performed an experiment comparing the manually designed
peers with the best heuristics. We sorted the variables in
decreasing order of information content and observed the
decay in precision as the first variable, the first two variables,
first three variables, etc. were removed from each model. The
experiment showed that the heuristics precision drops
abruptly (from 50%to 30%), while the peer-based prediction
drops from 54% to 44% and then stabilizes at that level. The
peers designed by the Evolutionary Algorithms) provided the
best accuracy overall:

–60.3% = over 3 x random, 1.2x heuristics on selection
for top 20% (based on past performance)

–63.5% = over 10 x random, 1.7 x heuristics on selection
for top 52 units (based on past performance)

–55.0% = over 2.5 x random, 1.5 x heuristics on
selection for top 20% (based on future performance).

Dynamic criteria for peer recognition (by evolving
attribute weighting) demonstrated the ability to adapt to
changing operational and maintenance environments. The

evolution of the search parameters {(ai, bi)} provided an
additional performance improvement reducing the number of
null queries while improving the overall precision of the
classifier. Table 1 shows the value of the weights and search
parameter settings for time-slice 3, while Figure 6 illustrates
the evolution of the weights over the three time slices.

TABLE II
WEIGHTS AND SEARCH PARAMETERS FOR TIME-SLICE 3

Index Feature Weight a Range (a) b Range (b)
1 RY_Rec/Yr 9.11 5.6 [0-6] 3.73 [0.5-5]
2 RY_Rec/100K_Miles 8.81 5.3 [0-8] 2.57 [0.5-5]
3 RY_Rec/100K_Engine_Hrs 7.35 35.9 [20-45] 2.67 [0.5-5]
4 RY_Rec_Count 5.69 8.5 [2.5-12] 3.37 [0.5-5]
5 RY_Rec/100K_Eng_Hrs_Move 4.08 10.1 [5-30] 2.75 [0.5-5]
6 Tot_Rec_Count 1.33 18.7 [3-50] 3.20 [0.5-5]
7 R_Rec_Count 0.87 1.0 [0.5-8] 3.16 [0.5-5]

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

RY_REC/YR TOT_REC_COUNT

Weights Slice 1
Weights Slice 2
Weights Slice 3

1 2 3 4 5 6 7 Index

Fig. 6. Evolution of weights for the top seven variables

over the three time slices (Index number described in Table I)

B. Future Directions
Our experiments have shown the applicability of

evolutionary algorithms, used in a wrapper approach, to
select the best attributes for representing peers and to define
similarity measures for identifying the most similar peers for
a given unit. By evolving the models over different time
slices, we have also shown our ability to dynamically adapt
the neighborhoods of peers using incremental operational and
maintenance data. In future work, we could extend the
structural design of the attribute space (for the definition of
peers). By using genetic programming in lieu of evolutionary
algorithms, we could extend attribute selection and weighting
to attribute construction. We could also improve the fitness
function to tradeoff classifier accuracy and confidence by
adding measure of representation parsimony and find Pareto
fronts for different tradeoffs.

We could also extend our approach by generating more
sophisticated local models for prediction. Our current
assumption was that each peer had a rather “feeble” track-
history, which motivated the peer approach to begin with. As
such we could not use too many degrees of freedom in
creating the local models and we limited ourselves to an
exponential average, completely defined by the value of α.
In situations where the peers have a richer track-history, we
could experiment with more complex models [10], whose
parameters could be obtained using a local search method,
e.g., error minimization, inside each EA’s trial. This would be
another example of intertwining local with global search [13].

By evolving the models over different time slices, we
have shown a possible role that evolutionary search can play

in the maintenance of models, as EA’s provide a mechanism
for model updating, preventing model obsolescence, and
supporting model lifecycle [1,12].

ACKNOWLEDGMENT

This work was funded by DARPA, through contract
CACI 621-04-S-0031. The authors gratefully acknowledge
the help of many individuals and organizations that made this
work possible, such as Drs. Norm Sondheimer, Al Wallace,
and Peter Will, members of DARPA Steering Committee,
and GE Rail who provided us with the data sets and domain
knowledge that were indispensable for the generation of the
models and the validation of the experiments.

REFERENCES

[1] P. Bonissone, “Development and maintenance of fuzzy
models in financial applications” in Soft Methodology
and Random Information Systems, M. Lopez-Diaz, M.
Gil, P. Grzegorzwski, O. Hyrniewicz, J. Lawry, Eds.
Berlin, Germany: Springer Verlag, 2004, pp. 50-66.

[2] D.B. Fogel, Evolving Artificial Intelligence, Ph.D.
Dissertation, Univ. of California San Diego, CA, 1992.

[3] E.Vonk, L.Jain, and R. Johnson, Automatic Generation of
Neural Network Architecture Using Evolutionary
Computation. Singapore: World Scientific Pub., 1997.

[4] P. Larrañaga, J. Lozano, “Synergies between evolutionary
computation and probabilistic graphical models”, Int.
Journal of Approximate Reasoning, Vol 31(3), 2002.

[5] C.L. Karr, “Design of an adaptive fuzzy logic controller
using genetic algorithms”, Proc. Int. Conf. on Genetic
Algorithms (ICGA'91), S. Diego, CA, 1991, pp. 450-456

[6] P. Bonissone, R. Subbu, and K. Aggour, “Evolutionary
optimization of fuzzy decision systems for automated
insurance underwriting,” in Proceedings of the 2002
IEEE International Conference on Fuzzy Systems,
Honolulu. Piscataway, NJ: IEEE, 2002, pp. 1003-1008.

[7] H. Witten and E. Frank, Data Mining: Practical machine
learning tools with Java implementations, San Francisco,
CA: Morgan Kaufmann, 2000.

[8] C.G. Atkeson, “Memory-based approaches to
approximating continuous functions”, in Nonlinear
Modeling and Forecasting, M. Casdagli and S. Eubank,
Eds. Harlow, UK: Addison Wesley, 1992, pp. 503-521.

[9] H. Bersini, G. Bontempi, and M. Birattari, “Is readability
compatible with accuracy? From neuro-fuzzy to lazy
learning”, Proceedings in Artificial Intelligence 7, C.
Freksa, Ed. Berlin, Germany: Infix/Aka, 1998, pp. 10-25.

[10] C.G. Atkeson, A.W. Moore, S. Shaal, “Locally
Weighted Learning” Artificial Intelligence Review,
11:11-73, 1997.

[11] A. Freitas, Data Mining and Knowledge Discovery with
Evolutionary Algorithms, Springer-Verlag, Berlin, 2002.

[12] P. Bonissone, “The life cycle of a fuzzy knowledge-
based classifier”, Proceedings 2003 NAFIPS, Chicago,
IL. Piscataway, NJ: IEEE, 2003, pp. 488-494.

[13] J.-M Renders, H. Bersini, “Hybridizing genetic
algorithms with hill-climbing methods for global
optimization: two possible ways”, Proceedings 1st IEEE
CEC, Orlando, FL. NJ: IEEE, 1994. 312 - 317 vol.1.

